Java源码解析 —— HashMap

前言

之前对于List结构,我们分析了ArrayListLinkedList,就这两者而言,反映的是两种思想:

  • ArrayList以数组形式实现,顺序插入、查找快,插入、删除较慢
  • LinkedList以链表形式实现,顺序插入、查找较慢,插入、删除方便

那么是否有一种数据结构能够结合上面两种的优点呢?有,答案就是HashMap。它是基于哈希表的 Map 接口的实现,以key-value的形式存在。

构造图如下:
蓝色线条:继承
绿色线条:接口实现

HashMap

要理解HashMap, 就必须要知道了解其底层的实现, 而底层实现里最重要的就是它的数据结构了,HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

在分析要理解HashMap源码前有必要对hashcode进行说明:

  1. hashCode的存在主要是用于查找的快捷性,如Hashtable,HashMap等,hashCode是用来在散列存储结构中确定对象的存储地址的;
  2. 如果两个对象相同,就是适用于equals(java.lang.Object) 方法,那么这两个对象的hashCode一定要相同;
  3. 如果对象的equals方法被重写,那么对象的hashCode也尽量重写,并且产生hashCode使用的对象,一定要和equals方法中使用的一致,否则就会违反上面提到的第2点;
  4. 两个对象的hashCode相同,并不一定表示两个对象就相同,也就是不一定适用于equals(java.lang.Object) 方法,只能够说明这两个对象在散列存储结构中,如Hashtable,他们“存放在同一个篮子里”。

hashcode是用来查找的,如果你学过数据结构就应该知道,在查找和排序这一章有
例如内存中有这样的位置
0 1 2 3 4 5 6 7
而我有个类,这个类有个字段叫ID,我要把这个类存放在以上8个位置之一,如果不用hashcode而任意存放,那么当查找时就需要到这八个位置里挨个去找,或者用二分法一类的算法。
但如果用hashcode那就会使效率提高很多。
我们这个类中有个字段叫ID,那么我们就定义我们的hashcode为ID%8,然后把我们的类存放在取得得余数那个位置。比如我们的ID为9,9除8的余数为1,那么我们就把该类存在1这个位置,如果ID是13,求得的余数是5,那么我们就把该类放在5这个位置。这样,以后在查找该类时就可以通过ID除 8求余数直接找到存放的位置了。

但是如果两个类有相同的hashcode怎么办(我们假设上面的类的ID不是唯一的),例如9除以8和17除以8的余数都是1,那么这是不是合法的,回答是:可以这样。那么如何判断呢?在这个时候就需要定义equals了。
也就是说,我们先通过 hashcode来判断两个类是否存放某个桶里,但这个桶里可能有很多类,那么我们就需要再通过equals来在这个桶里找到我们要的类。
那么。重写了equals(),为什么还要重写hashCode()呢?
想想,你要在一个桶里找东西,你必须先要找到这个桶啊,你不通过重写hashcode()来找到桶,光重写equals()有什么用啊

HashMap简介

定义

1
2
public class HashMap<K,V> extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable

HashMap是一个散列表,它存储的内容是键值对(key-value)映射。
HashMap继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。
HashMap的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。

HashMap属性

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 默认初始容量为16,必须为2的n次幂
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

// 最大容量为2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;

// 默认加载因子为0.75f
static final float DEFAULT_LOAD_FACTOR = 0.75f;

// Entry数组,长度必须为2的n次幂
transient Node<K,V>[] table;

// 已存储元素的数量
transient int size;

// 下次扩容的临界值,size >= threshold就会扩容,threshold等于capacity * loadFactor
int threshold;

// 加载因子
final float loadFactor;

HashMap是通过”拉链法”实现的哈希表。它包括几个重要的成员变量:table, size, threshold, loadFactor, modCount。

  • table是一个Node[]数组类型,而Node实际上就是一个单向链表。哈希表的“key-value键值对”都是存储在Node数组中的。
  • size是HashMap的大小,它是HashMap保存的键值对的数量。
  • threshold是HashMap的阈值,用于判断是否需要调整HashMap的容量。threshold的值 = “容量 * 加载因子”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
  • loadFactor就是加载因子。
  • modCount是用来实现fail-fast机制的。

可以看出HashMap底层是用Node数组存储数据,同时定义了初始容量,最大容量,加载因子等参数,至于为什么容量必须是2的幂,加载因子又是什么,下面再说,先来看一下Node的定义。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next; // 指向下一个节点

Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}

public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }

public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}

public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}

public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}

Node是HashMap的内部类,它继承了Map中的Entry接口,它定义了键(key),值(value),和下一个节点的引用(next),以及hash值。很明确的可以看出Node是什么结构,它是单线链表的一个节点。也就是说HashMap的底层结构是一个数组,而数组的元素是一个单向链表。

HashMap-structure

为什么会有这样的设计?之前介绍的List中查询时需要遍历所有的数组,为了解决这个问题HashMap采用hash算法将key散列为一个int值,这个int值对应到数组的下标,再做查询操作的时候,拿到key的散列值,根据数组下标就能直接找到存储在数组的元素。但是由于hash可能会出现相同的散列值,为了解决冲突,HashMap采用将相同的散列值存储到一个链表中,也就是说在一个链表中的元素他们的散列值绝对是相同的。找到数组下标取出链表,再遍历链表是不是比遍历整个数组效率好的多呢?

我们来看一下HashMap的具体实现。

HashMap构造函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/**
* 构造一个使用默认初始容量(16)和默认加载因子(0.75)的HashMap
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

/**
* 构造一个指定初始容量的HashMap
*/
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
* 构造一个指定初始容量和加载因子的HashMap
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}

/**
* 构造一个指定map的HashMap,所创建HashMap使用默认加载因子(0.75)和足以容纳指定map的初始容量。
*/
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
if (table == null) { // pre-size
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}

HashMap提供了四个构造函数:

  • HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空HashMap。
  • HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空HashMap。
  • HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空HashMap。
  • public HashMap(Map<? extends K, ? extends V> m):包含“子Map”的构造函数。

在这里提到了两个参数:初始容量,加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。

源码解析

put方法

HashMap会对null值key进行特殊处理,总是放到table[0]位置
put过程是先计算hash然后通过hash与table.length取模计算index值,然后将key放到table[index]位置,当table[index]已存在其它元素时,会在table[index]位置形成一个链表,将新添加的元素放在table[index],原来的元素通过Entry的next进行链接,这样以链表形式解决hash冲突问题,当元素数量达到临界值(capactiyfactor)时,则进行扩容,是table数组长度变为table.length * 2。

HashMap_put

  1. 判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
  2. 根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向6,如果table[i]不为空,转向3;
  3. 判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向4,这里的相同指的是hashCode以及equals;
  4. 判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向5;
  5. 遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
  6. 插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
// 步骤①:tab为空则创建
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
// 步骤②:计算index,并对null做处理
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 步骤③:节点key存在,直接覆盖value
e = p;
else if (p instanceof TreeNode)
// 步骤④:判断该链为红黑树
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 步骤⑤:该链为链表
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//链表长度大于8转换为红黑树进行处理
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// key已经存在直接覆盖value
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
// 步骤⑥:超过最大容量,就扩容
resize();
afterNodeInsertion(evict);
return null;
}

resize扩容

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。

分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//传入新的容量
void resize(int newCapacity) {
// 引用扩容前的Entry数组
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
// 扩容前的数组大小如果已经达到最大(2^30)了
// 修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
threshold = Integer.MAX_VALUE;
return;
}

// 初始化一个新的Entry数组
Entry[] newTable = new Entry[newCapacity];
// !!将数据转移到新的Entry数组里
transfer(newTable);
// HashMap的table属性引用新的Entry数组
table = newTable;
// 修改阈值
threshold = (int)(newCapacity * loadFactor);
}

这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
void transfer(Entry[] newTable) {
// src引用了旧的Entry数组
Entry[] src = table;
int newCapacity = newTable.length;
// 遍历旧的Entry数组
for (int j = 0; j < src.length; j++) {
// 取得旧Entry数组的每个元素
Entry<K,V> e = src[j];
if (e != null) {
// 释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
src[j] = null;
do {
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
// 标记[i]
e.next = newTable[i];
// 将元素放在数组上
newTable[i] = e;
// 访问下一个Entry链上的元素
e = next;
} while (e != null);
}
}
}

newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。

下面举个例子说明下扩容过程。假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2, 所以key = 3、7、5,put顺序依次为 5、7、3。在mod 2以后都冲突在table[1]这里了。这里假设负载因子 loadFactor = 1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,然后所有的Node重新rehash的过程。

hashmap_resize

下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。

hashMap_hash_1.8

元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

hashMap_hash_1.8_2

因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:

hashmap_resize_1.8

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩充了,就只好随你碰撞去吧
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 没超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 链表优化重hash的代码块
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引+oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}

get方法

get的过程是先计算hash然后通过hash与table.length取模计算index值,然后遍历table[index]上的链表,直到找到key,然后返回。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 根据hash值找到桶,查看第一个Node的key若相等,则返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 若是红黑树结构,调用红黑树的getTreeNode方法返回
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
// 遍历链表,返回key-value
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}

remove方法

计算hash,计算index,然后遍历查找,将找到的元素从table[index]链表移除。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
 public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
// 链表删除节点操作
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}

clear方法

clear方法非常简单,就是遍历table然后把每个位置置为null,同时修改元素个数为0。
需要注意的是clear方法只会清除里面的元素,并不会重置capactiy。

1
2
3
4
5
6
7
8
9
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {
size = 0;
for (int i = 0; i < tab.length; ++i)
tab[i] = null;
}
}

containsKey方法

containsKey方法调用getNode方法,返回取到的Node是否为空。

containsValue方法

containsValue方法就比较粗暴了,就是直接遍历所有元素直到找到value,由此可见HashMap的containsValue方法本质上和普通数组和list的contains方法没什么区别,别指望它会像containsKey那么高效:

1
2
3
4
5
6
7
8
9
10
11
12
13
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}

entrySet()、values()、keySet()方法

它们3个的原理类似,这里以entrySet()为例来说明。
entrySet()的作用是返回“HashMap中所有Entry的集合”,它是一个集合。实现代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// 返回“HashMap的Entry集合”,实际是返回一个EntrySet对象
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es;
return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
}

// EntrySet对应的集合
// EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。
final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public final boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Node<K,V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}

HashMap是通过拉链法实现的散列表。表现在HashMap包括许多的Node,而每一个Node本质上又是一个单向链表。那么HashMap遍历key-value键值对的时候,是如何逐个去遍历的呢?

下面我们就看看HashMap是如何通过entrySet()遍历的
entrySet()实际上是通过newEntryIterator()实现的。 下面我们看看它的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// 返回一个“entry迭代器”
public final Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}

// Entry的迭代器
final class EntryIterator extends HashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() {
return nextNode();
}
}

// HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。
// 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
abstract class HashIterator {
// 下一个元素
Node<K,V> next; // next entry to return
// 当前元素
Node<K,V> current; // current entry
// expectedModCount用于实现fast-fail机制。
int expectedModCount; // for fast-fail
// 当前索引
int index; // current slot

HashIterator() {
expectedModCount = modCount;
Node<K,V>[] t = table;
current = next = null;
index = 0;
if (t != null && size > 0) { // advance to first entry
// 将next指向table中第一个不为null的元素。
// 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。
do {} while (index < t.length && (next = t[index++]) == null);
}
}

public final boolean hasNext() {
return next != null;
}

// 获取下一个元素
final Node<K,V> nextNode() {
Node<K,V>[] t;
Node<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();

// 注意!!!
// 一个Entry就是一个单向链表
// 若该Entry的下一个节点不为空,就将next指向下一个节点;
// 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
if ((next = (current = e).next) == null && (t = table) != null) {
do {} while (index < t.length && (next = t[index++]) == null);
}
return e;
}

// 删除当前元素
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}

当我们通过entrySet()获取到的Iterator的next()方法去遍历HashMap时,实际上调用的是nextEntry() 。而nextEntry()的实现方式,先遍历Entry(根据Entry在table中的序号,从小到大的遍历);然后对每个Entry(即每个单向链表),逐个遍历。

hash方法

JDK 1.8 中的hash方法简便了许多,只做一次16位无符号右位移异或混合,而不是四次,并且1.8中取消了indexFor方法:

1
2
3
4
5
static final int hash(Object key) {
int h;
// key.hashCode()为哈希算法,返回初始哈希值
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

总结

HashMap和Hashtable的区别

  1. 两者最主要的区别在于Hashtable是线程安全,而HashMap则非线程安全。Hashtable的实现方法里面都添加了synchronized关键字来确保线程同步,因此相对而言HashMap性能会高一些,我们平时使用时若无特殊需求建议使用HashMap,在多线程环境下若使用HashMap需要使用Collections.synchronizedMap()方法来获取一个线程安全的集合(Collections.synchronizedMap()实现原理是Collections定义了一个SynchronizedMap的内部类,这个类实现了Map接口,在调用方法时使用synchronized来保证线程同步,当然了实际上操作的还是我们传入的HashMap实例,简单的说就是Collections.synchronizedMap()方法帮我们在操作HashMap时自动添加了synchronized来实现线程同步,类似的其它Collections.synchronizedXX方法也是类似原理)
    HashMap可以使用null作为key,而Hashtable则不允许null作为key
  2. 虽说HashMap支持null值作为key,不过建议还是尽量避免这样使用,因为一旦不小心使用了,若因此引发一些问题,排查起来很是费事。HashMap以null作为key时,总是存储在table数组的第一个节点上
  3. HashMap是对Map接口的实现,HashTable实现了Map接口和Dictionary抽象类
  4. HashMap的初始容量为16,HashTable初始容量为11,两者的填充因子默认都是0.75。HashMap扩容时是当前容量翻倍即:capacity * 2,Hashtable扩容时是容量翻倍+1即:capacity * 2+1
  5. HashMap和Hashtable的底层实现都是数组 + 链表结构实现
  6. JDK1.8引入红黑树大程度优化了HashMap的性能
  7. HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap

参考一个介绍HashMap的好的Blog