前言 之前对于List结构,我们分析了ArrayList 和LinkedList ,就这两者而言,反映的是两种思想:
ArrayList以数组形式实现,顺序插入、查找快,插入、删除较慢
LinkedList以链表形式实现,顺序插入、查找较慢,插入、删除方便
那么是否有一种数据结构能够结合上面两种的优点呢?有,答案就是HashMap。它是基于哈希表的 Map 接口的实现,以key-value的形式存在。
构造图如下: 蓝色线条:继承 绿色线条:接口实现
要理解HashMap, 就必须要知道了解其底层的实现, 而底层实现里最重要的就是它的数据结构了,HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。
在分析要理解HashMap源码前有必要对hashcode进行说明:
hashCode的存在主要是用于查找的快捷性,如Hashtable,HashMap等,hashCode是用来在散列存储结构中确定对象的存储地址的;
如果两个对象相同,就是适用于equals(java.lang.Object) 方法,那么这两个对象的hashCode一定要相同;
如果对象的equals方法被重写,那么对象的hashCode也尽量重写,并且产生hashCode使用的对象,一定要和equals方法中使用的一致,否则就会违反上面提到的第2点;
两个对象的hashCode相同,并不一定表示两个对象就相同,也就是不一定适用于equals(java.lang.Object) 方法,只能够说明这两个对象在散列存储结构中,如Hashtable,他们“存放在同一个篮子里”。
hashcode是用来查找的,如果你学过数据结构就应该知道,在查找和排序这一章有 例如内存中有这样的位置 0 1 2 3 4 5 6 7 而我有个类,这个类有个字段叫ID,我要把这个类存放在以上8个位置之一,如果不用hashcode而任意存放,那么当查找时就需要到这八个位置里挨个去找,或者用二分法一类的算法。 但如果用hashcode那就会使效率提高很多。 我们这个类中有个字段叫ID,那么我们就定义我们的hashcode为ID%8,然后把我们的类存放在取得得余数那个位置。比如我们的ID为9,9除8的余数为1,那么我们就把该类存在1这个位置,如果ID是13,求得的余数是5,那么我们就把该类放在5这个位置。这样,以后在查找该类时就可以通过ID除 8求余数直接找到存放的位置了。
但是如果两个类有相同的hashcode怎么办(我们假设上面的类的ID不是唯一的),例如9除以8和17除以8的余数都是1,那么这是不是合法的,回答是:可以这样。那么如何判断呢?在这个时候就需要定义equals了。 也就是说,我们先通过 hashcode来判断两个类是否存放某个桶里,但这个桶里可能有很多类,那么我们就需要再通过equals来在这个桶里找到我们要的类。 那么。重写了equals(),为什么还要重写hashCode()呢? 想想,你要在一个桶里找东西,你必须先要找到这个桶啊,你不通过重写hashcode()来找到桶,光重写equals()有什么用啊
HashMap简介 定义 1 2 public class HashMap <K ,V > extends AbstractMap <K ,V > implements Map <K ,V >, Cloneable , Serializable
HashMap是一个散列表,它存储的内容是键值对(key-value)映射。 HashMap继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。 HashMap的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。
HashMap属性 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4 ; static final int MAXIMUM_CAPACITY = 1 << 30 ;static final float DEFAULT_LOAD_FACTOR = 0.75f ;transient Node<K,V>[] table;transient int size;int threshold;final float loadFactor;
HashMap是通过”拉链法”实现的哈希表。它包括几个重要的成员变量:table, size, threshold, loadFactor, modCount。
table是一个Node[]数组类型,而Node实际上就是一个单向链表。哈希表的“key-value键值对”都是存储在Node数组中的。
size是HashMap的大小,它是HashMap保存的键值对的数量。
threshold是HashMap的阈值,用于判断是否需要调整HashMap的容量。threshold的值 = “容量 * 加载因子”,当HashMap中存储数据的数量达到threshold时,就需要将HashMap的容量加倍。
loadFactor就是加载因子。
modCount是用来实现fail-fast机制的。
可以看出HashMap底层是用Node数组存储数据,同时定义了初始容量,最大容量,加载因子等参数,至于为什么容量必须是2的幂,加载因子又是什么,下面再说,先来看一下Node的定义。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 static class Node <K ,V > implements Map .Entry <K ,V > { final int hash; final K key; V value; Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) { this .hash = hash; this .key = key; this .value = value; this .next = next; } public final K getKey () { return key; } public final V getValue () { return value; } public final String toString () { return key + "=" + value; } public final int hashCode () { return Objects.hashCode(key) ^ Objects.hashCode(value); } public final V setValue (V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals (Object o) { if (o == this ) return true ; if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>)o; if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) return true ; } return false ; } }
Node是HashMap的内部类,它继承了Map中的Entry接口,它定义了键(key),值(value),和下一个节点的引用(next),以及hash值。很明确的可以看出Node是什么结构,它是单线链表的一个节点。也就是说HashMap的底层结构是一个数组,而数组的元素是一个单向链表。
为什么会有这样的设计?之前介绍的List中查询时需要遍历所有的数组,为了解决这个问题HashMap采用hash算法将key散列为一个int值,这个int值对应到数组的下标,再做查询操作的时候,拿到key的散列值,根据数组下标就能直接找到存储在数组的元素。但是由于hash可能会出现相同的散列值,为了解决冲突,HashMap采用将相同的散列值存储到一个链表中,也就是说在一个链表中的元素他们的散列值绝对是相同的 。找到数组下标取出链表,再遍历链表是不是比遍历整个数组效率好的多呢?
我们来看一下HashMap的具体实现。
HashMap构造函数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 public HashMap () { this .loadFactor = DEFAULT_LOAD_FACTOR; } public HashMap (int initialCapacity) { this (initialCapacity, DEFAULT_LOAD_FACTOR); } public HashMap (int initialCapacity, float loadFactor) { if (initialCapacity < 0 ) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this .loadFactor = loadFactor; this .threshold = tableSizeFor(initialCapacity); } public HashMap (Map<? extends K, ? extends V> m) { this .loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false ); } final void putMapEntries (Map<? extends K, ? extends V> m, boolean evict) { int s = m.size(); if (s > 0 ) { if (table == null ) { float ft = ((float )s / loadFactor) + 1.0F ; int t = ((ft < (float )MAXIMUM_CAPACITY) ? (int )ft : MAXIMUM_CAPACITY); if (t > threshold) threshold = tableSizeFor(t); } else if (s > threshold) resize(); for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { K key = e.getKey(); V value = e.getValue(); putVal(hash(key), key, value, false , evict); } } }
HashMap提供了四个构造函数:
HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空HashMap。
HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空HashMap。
HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空HashMap。
public HashMap(Map<? extends K, ? extends V> m):包含“子Map”的构造函数。
在这里提到了两个参数:初始容量,加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。
源码解析 put方法 HashMap会对null值key进行特殊处理,总是放到table[0]位置 put过程是先计算hash然后通过hash与table.length取模计算index值,然后将key放到table[index]位置,当table[index]已存在其它元素时,会在table[index]位置形成一个链表,将新添加的元素放在table[index],原来的元素通过Entry的next进行链接,这样以链表形式解决hash冲突问题 ,当元素数量达到临界值(capactiyfactor)时,则进行扩容,是table数组长度变为table.length * 2。
判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向6,如果table[i]不为空,转向3;
判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向4,这里的相同指的是hashCode以及equals;
判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向5;
遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 public V put (K key, V value) { return putVal(hash(key), key, value, false , true ); } final V putVal (int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0 ) n = (tab = resize()).length; if ((p = tab[i = (n - 1 ) & hash]) == null ) tab[i] = newNode(hash, key, value, null ); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this , tab, hash, key, value); else { for (int binCount = 0 ; ; ++binCount) { if ((e = p.next) == null ) { p.next = newNode(hash, key, value, null ); if (binCount >= TREEIFY_THRESHOLD - 1 ) treeifyBin(tab, hash); break ; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break ; p = e; } } if (e != null ) { V oldValue = e.value; if (!onlyIfAbsent || oldValue == null ) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null ; }
resize扩容 扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。
分析下resize的源码,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大,具体区别后文再说。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 void resize (int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return ; } Entry[] newTable = new Entry[newCapacity]; transfer(newTable); table = newTable; threshold = (int )(newCapacity * loadFactor); }
这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 void transfer (Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; for (int j = 0 ; j < src.length; j++) { Entry<K,V> e = src[j]; if (e != null ) { src[j] = null ; do { Entry<K,V> next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null ); } } }
newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。
下面举个例子说明下扩容过程。假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2, 所以key = 3、7、5,put顺序依次为 5、7、3。在mod 2以后都冲突在table[1]这里了。这里假设负载因子 loadFactor = 1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,然后所有的Node重新rehash的过程。
下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:
这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null ) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0 ; if (oldCap > 0 ) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1 ) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1 ; } else if (oldThr > 0 ) newCap = oldThr; else { newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int )(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0 ) { float ft = (float )newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float )MAXIMUM_CAPACITY ? (int )ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings ({"rawtypes" ,"unchecked" }) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null ) { for (int j = 0 ; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null ) { oldTab[j] = null ; if (e.next == null ) newTab[e.hash & (newCap - 1 )] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this , newTab, j, oldCap); else { Node<K,V> loHead = null , loTail = null ; Node<K,V> hiHead = null , hiTail = null ; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0 ) { if (loTail == null ) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null ) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null ); if (loTail != null ) { loTail.next = null ; newTab[j] = loHead; } if (hiTail != null ) { hiTail.next = null ; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
get方法 get的过程是先计算hash然后通过hash与table.length取模计算index值,然后遍历table[index]上的链表,直到找到key,然后返回。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 public V get (Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode (int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1 ) & hash]) != null ) { if (first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k)))) return first; if ((e = first.next) != null ) { if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null ); } } return null ; }
remove方法 计算hash,计算index,然后遍历查找,将找到的元素从table[index]链表移除。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 public V remove (Object key) { Node<K,V> e; return (e = removeNode(hash(key), key, null , false , true )) == null ? null : e.value; } final Node<K,V> removeNode (int hash, Object key, Object value, boolean matchValue, boolean movable) { Node<K,V>[] tab; Node<K,V> p; int n, index; if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1 ) & hash]) != null ) { Node<K,V> node = null , e; K k; V v; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) node = p; else if ((e = p.next) != null ) { if (p instanceof TreeNode) node = ((TreeNode<K,V>)p).getTreeNode(hash, key); else { do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { node = e; break ; } p = e; } while ((e = e.next) != null ); } } if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) { if (node instanceof TreeNode) ((TreeNode<K,V>)node).removeTreeNode(this , tab, movable); else if (node == p) tab[index] = node.next; else p.next = node.next; ++modCount; --size; afterNodeRemoval(node); return node; } } return null ; }
clear方法 clear方法非常简单,就是遍历table然后把每个位置置为null,同时修改元素个数为0。 需要注意的是clear方法只会清除里面的元素,并不会重置capactiy。
1 2 3 4 5 6 7 8 9 public void clear () { Node<K,V>[] tab; modCount++; if ((tab = table) != null && size > 0 ) { size = 0 ; for (int i = 0 ; i < tab.length; ++i) tab[i] = null ; } }
containsKey方法 containsKey方法调用getNode
方法,返回取到的Node是否为空。
containsValue方法 containsValue方法就比较粗暴了,就是直接遍历所有元素直到找到value,由此可见HashMap的containsValue方法本质上和普通数组和list的contains方法没什么区别,别指望它会像containsKey那么高效:
1 2 3 4 5 6 7 8 9 10 11 12 13 public boolean containsValue (Object value) { Node<K,V>[] tab; V v; if ((tab = table) != null && size > 0 ) { for (int i = 0 ; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null ; e = e.next) { if ((v = e.value) == value || (value != null && value.equals(v))) return true ; } } } return false ; }
entrySet()、values()、keySet()方法 它们3个的原理类似,这里以entrySet()为例来说明。 entrySet()的作用是返回“HashMap中所有Entry的集合”,它是一个集合 。实现代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 public Set<Map.Entry<K,V>> entrySet() { Set<Map.Entry<K,V>> es; return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; } final class EntrySet extends AbstractSet <Map .Entry <K ,V >> { public final int size () { return size; } public final void clear () { HashMap.this .clear(); } public final Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(); } public final boolean contains (Object o) { if (!(o instanceof Map.Entry)) return false ; Map.Entry<?,?> e = (Map.Entry<?,?>) o; Object key = e.getKey(); Node<K,V> candidate = getNode(hash(key), key); return candidate != null && candidate.equals(e); } public final boolean remove (Object o) { if (o instanceof Map.Entry) { Map.Entry<?,?> e = (Map.Entry<?,?>) o; Object key = e.getKey(); Object value = e.getValue(); return removeNode(hash(key), key, value, true , true ) != null ; } return false ; } public final Spliterator<Map.Entry<K,V>> spliterator() { return new EntrySpliterator<>(HashMap.this , 0 , -1 , 0 , 0 ); } public final void forEach (Consumer<? super Map.Entry<K,V>> action) { Node<K,V>[] tab; if (action == null ) throw new NullPointerException(); if (size > 0 && (tab = table) != null ) { int mc = modCount; for (int i = 0 ; i < tab.length; ++i) { for (Node<K,V> e = tab[i]; e != null ; e = e.next) action.accept(e); } if (modCount != mc) throw new ConcurrentModificationException(); } } }
HashMap是通过拉链法实现的散列表。表现在HashMap包括许多的Node,而每一个Node本质上又是一个单向链表。那么HashMap遍历key-value键值对的时候,是如何逐个去遍历的呢?
下面我们就看看HashMap是如何通过entrySet()遍历的 。 entrySet()实际上是通过newEntryIterator()实现的。 下面我们看看它的代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 public final Iterator<Map.Entry<K,V>> iterator() { return new EntryIterator(); } final class EntryIterator extends HashIterator implements Iterator <Map .Entry <K ,V >> { public final Map.Entry<K,V> next () { return nextNode(); } } abstract class HashIterator { Node<K,V> next; Node<K,V> current; int expectedModCount; int index; HashIterator() { expectedModCount = modCount; Node<K,V>[] t = table; current = next = null ; index = 0 ; if (t != null && size > 0 ) { do {} while (index < t.length && (next = t[index++]) == null ); } } public final boolean hasNext () { return next != null ; } final Node<K,V> nextNode () { Node<K,V>[] t; Node<K,V> e = next; if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (e == null ) throw new NoSuchElementException(); if ((next = (current = e).next) == null && (t = table) != null ) { do {} while (index < t.length && (next = t[index++]) == null ); } return e; } public final void remove () { Node<K,V> p = current; if (p == null ) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); current = null ; K key = p.key; removeNode(hash(key), key, null , false , false ); expectedModCount = modCount; } }
当我们通过entrySet()获取到的Iterator的next()方法去遍历HashMap时,实际上调用的是nextEntry() 。而nextEntry()的实现方式,先遍历Entry(根据Entry在table中的序号,从小到大的遍历);然后对每个Entry(即每个单向链表),逐个遍历。
hash方法 JDK 1.8 中的hash方法简便了许多,只做一次16位无符号右位移异或混合,而不是四次,并且1.8中取消了indexFor方法:
1 2 3 4 5 static final int hash (Object key) { int h; return (key == null ) ? 0 : (h = key.hashCode()) ^ (h >>> 16 ); }
总结 HashMap和Hashtable的区别
两者最主要的区别在于Hashtable是线程安全,而HashMap则非线程安全 。Hashtable的实现方法里面都添加了synchronized关键字来确保线程同步,因此相对而言HashMap性能会高一些,我们平时使用时若无特殊需求建议使用HashMap,在多线程环境下若使用HashMap需要使用Collections.synchronizedMap()方法来获取一个线程安全的集合(Collections.synchronizedMap()实现原理是Collections定义了一个SynchronizedMap的内部类,这个类实现了Map接口,在调用方法时使用synchronized来保证线程同步,当然了实际上操作的还是我们传入的HashMap实例,简单的说就是Collections.synchronizedMap()方法帮我们在操作HashMap时自动添加了synchronized来实现线程同步,类似的其它Collections.synchronizedXX方法也是类似原理) HashMap可以使用null作为key,而Hashtable则不允许null作为key
虽说HashMap支持null值作为key,不过建议还是尽量避免这样使用,因为一旦不小心使用了,若因此引发一些问题,排查起来很是费事。HashMap以null作为key时,总是存储在table数组的第一个节点上
HashMap是对Map接口的实现,HashTable实现了Map接口和Dictionary抽象类
HashMap的初始容量为16,HashTable初始容量为11,两者的填充因子默认都是0.75。HashMap扩容时是当前容量翻倍即:capacity * 2,Hashtable扩容时是容量翻倍+1即:capacity * 2+1
HashMap和Hashtable的底层实现都是数组 + 链表结构实现
JDK1.8引入红黑树大程度优化了HashMap的性能
HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap
参考一个介绍HashMap的好的Blog 。