单例设计模式及写法

本文主要介绍单例设计模式。包括单例的概念、用途、实现方式、如何防止被序列化破坏等。

概念

单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式。保证一个类仅有一个实例,并提供一个访问它的全局访问点。

单例模式一般体现在类声明中,单例的类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。

用途

单例模式有以下两个优点:

  • 在内存里只有一个实例,减少了内存的开销,尤其是频繁的创建和销毁实例(比如网站首页页面缓存);
  • 避免对资源的多重占用(比如写文件操作)。

有时候,我们在选择使用单例模式的时候,不仅仅考虑到其带来的优点,还有可能是有些场景就必须要单例。

实现方式

我们知道,一个类的对象的产生是由类构造函数来完成的。如果一个类对外提供了public的构造方法,那么外界就可以任意创建该类的对象。所以,如果想限制对象的产生,一个办法就是将构造函数变为私有的(至少是受保护的),使外面的类不能通过引用来产生对象。同时为了保证类的可用性,就必须提供一个自己的对象以及访问这个对象的静态方法。

饿汉式

下面是一个简单的单例的实现:

1
2
3
4
5
6
7
8
9
10
11
public class Singleton {
//在类内部实例化一个实例
private static Singleton instance = new Singleton();
//私有的构造函数,外部无法访问
private Singleton() {
}
//对外提供获取实例的静态方法
public static Singleton getInstance() {
return instance;
}
}

上面代码就是一个简单的单例的实现,这种实现方式我们称之为饿汉式。所谓饿汉。这是个比较形象的比喻。对于一个饿汉来说,他希望他想要用到这个实例的时候就能够立即拿到,而不需要任何等待时间。所以,通过static的静态初始化方式,在该类第一次被加载的时候,就有一个Singleton的实例被创建出来了。这样就保证在第一次想要使用该对象时,它已经被初始化好了。

同时,由于该实例在类被加载的时候就创建出来了,所以也避免了线程安全问题。

还有一种饿汉式的变种:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Singleton2 {
//在类内部定义
private static Singleton2 instance;
static {
//实例化该实例
instance = new Singleton2();
}
//私有的构造函数,外部无法访问
private Singleton2() {
}
//对外提供获取实例的静态方法
public static Singleton2 getInstance() {
return instance;
}
}

其实是一样的,都是在类被加载的时候实例化一个对象。

饿汉式单例,在类被加载的时候对象就会实例化。这也许会造成不必要的消耗,因为有可能这个实例根本就不会被用到。而且,如果这个类被多次加载的话也会造成多次实例化。其实解决这个问题的方式有很多,下面提供两种解决方式,第一种是使用静态内部类的形式。第二种是使用懒汉式。

静态内部类式

先来看通过静态内部类的方式解决上面的问题:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class StaticInnerClassSingleton {
//在静态内部类中初始化实例对象
private static class SingletonHolder {
private static final StaticInnerClassSingleton INSTANCE = new StaticInnerClassSingleton();
}
//私有的构造方法
private StaticInnerClassSingleton() {
}
//对外提供获取实例的静态方法
public static final StaticInnerClassSingleton getInstance() {
return SingletonHolder.INSTANCE;
}
}

这种方式同样利用了classloder的机制来保证初始化instance时只有一个线程,它跟饿汉式不同的是(很细微的差别):饿汉式是只要Singleton类被装载了,那么instance就会被实例化(没有达到lazy loading效果),而这种方式是Singleton类被装载了,instance不一定被初始化。因为SingletonHolder类没有被主动使用,只有显示通过调用getInstance方法时,才会显示装载SingletonHolder类,从而实例化instance。想象一下,如果实例化instance很消耗资源,我想让他延迟加载,另外一方面,我不希望在Singleton类加载时就实例化,因为我不能确保Singleton类还可能在其他的地方被主动使用从而被加载,那么这个时候实例化instance显然是不合适的。这个时候,这种方式相比饿汉式更加合理。

懒汉式

下面看另外一种在该对象真正被使用的时候才会实例化的单例模式——懒汉式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Singleton {
//定义实例
private static Singleton instance;
//私有构造方法
private Singleton(){}
//对外提供获取实例的静态方法
public static Singleton getInstance() {
//在对象被使用的时候才实例化
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}

上面这种单例叫做懒汉式单例。懒汉,就是不会提前把实例创建出来,将类对自己的实例化延迟到第一次被引用的时候。getInstance方法的作用是希望该对象在第一次被使用的时候被new出来。

有没有发现,其实这种懒汉式单例其实还存在一个问题,那就是线程安全问题。在多线程情况下,有可能两个线程同时进入if语句中,这样,在两个线程都从if中退出的时候就创建了两个不一样的对象。

线程安全的懒汉式

针对线程不安全的懒汉式的单例,其实解决方式很简单,就是给创建对象的步骤加锁:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class SynchronizedSingleton {
//定义实例
private static SynchronizedSingleton instance;
//私有构造方法
private SynchronizedSingleton(){}
//对外提供获取实例的静态方法,对该方法加锁
public static synchronized SynchronizedSingleton getInstance() {
//在对象被使用的时候才实例化
if (instance == null) {
instance = new SynchronizedSingleton();
}
return instance;
}
}

这种写法能够在多线程中很好的工作,而且看起来它也具备很好的延迟加载,但是,遗憾的是,它效率很低,因为99%情况下不需要同步。(因为上面的synchronized的加锁范围是整个方法,该方法的所有操作都是同步进行的,但是对于非第一次创建对象的情况,也就是没有进入if语句中的情况,根本不需要同步操作,可以直接返回instance。)

双重校验锁

针对上面code存在的问题,相信对并发编程了解的同学都知道如何解决。其实上面的代码存在的问题主要是锁的范围太大了。只要缩小锁的范围就可以了。那么如何缩小锁的范围呢?相比于同步方法,同步代码块的加锁范围更小。可以改造成:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Singleton {

private static Singleton singleton;

private Singleton() {
}

public static Singleton getSingleton() {
if (singleton == null) {
synchronized (Singleton.class) {
if (singleton == null) {
singleton = new Singleton();
}
}
}
return singleton;
}
}

上面code是一种改进写法,通过使用同步代码块的方式减小了锁的范围。这样可以大大提高效率。(对于已经存在singleton的情况,无须同步,直接return)。

但是,事情真的有这么容易吗?上面的代码看上去好像是没有任何问题。实现了惰性初始化,解决了同步问题,还减小了锁的范围,提高了效率。但是,该代码还存在隐患。隐患的原因主要和Java内存模型(JMM)有关。考虑下面的事件序列:

  • 线程A发现变量没有被初始化, 然后它获取锁并开始变量的初始化。
  • 由于某些编程语言的语义,编译器生成的代码允许在线程A执行完变量的初始化之前,更新变量并将其指向部分初始化的对象。
  • 线程B发现共享变量已经被初始化,并返回变量。由于线程B确信变量已被初始化,它没有获取锁。如果在A完成初始化之前共享变量对B可见(这是由于A没有完成初始化或者因为一些初始化的值还没有穿过B使用的内存(缓存一致性)),程序很可能会崩溃。

在J2SE 1.4或更早的版本中使用双重检查锁有潜在的危险,有时会正常工作(区分正确实现和有小问题的实现是很困难的。取决于编译器,线程的调度和其他并发系统活动,不正确的实现双重检查锁导致的异常结果可能会间歇性出现。重现异常是十分困难的。) 在J2SE 5.0中,这一问题被修正了。volatile关键字保证多个线程可以正确处理单个实例。

使用volatile

所以,使用volatile的方案:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class VolatileSingleton {
private static volatile VolatileSingleton singleton;

private VolatileSingleton() {
}

public static VolatileSingleton getSingleton() {
if (singleton == null) {
synchronized (VolatileSingleton.class) {
if (singleton == null) {
singleton = new VolatileSingleton();
}
}
}
return singleton;
}
}

上面这种双重校验锁的方式用的比较广泛,它解决了前面提到的所有问题。但是,即使是这种看上去完美无缺的方式也可能存在问题,那就是遇到序列化的时候。详细内容后文介绍。

使用final

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class FinalWrapper<T> {
public final T value;

public FinalWrapper(T value) {
this.value = value;
}
}

public class FinalSingleton {
private FinalWrapper<FinalSingleton> helperWrapper = null;

public FinalSingleton getHelper() {
FinalWrapper<FinalSingleton> wrapper = helperWrapper;

if (wrapper == null) {
synchronized (this) {
if (helperWrapper == null) {
helperWrapper = new FinalWrapper<FinalSingleton>(new FinalSingleton());
}
wrapper = helperWrapper;
}
}
return wrapper.value;
}
}

枚举式

在1.5之前,实现单例一般只有以上几种办法,在1.5之后,还有另外一种实现单例的方式,那就是使用枚举:

1
2
3
4
5
6
public enum Singleton {

INSTANCE;
Singleton() {
}
}

它不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象(下面会介绍),可谓是很坚强的壁垒啊。不过,在实际工作中,我也很少看见有人这么写过,但是不代表它不好。

单例和序列化

在《单例与序列化的那些事儿》一文中就分析过单例和序列化之前的关系——序列化可以破坏单例。

为什么序列化可以破坏单例了?答:序列化会通过反射调用无参数的构造方法创建一个新的对象。

要想防止序列化对单例的破坏,只要在Singleton类中定义readResolve就可以解决该问题:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import java.io.Serializable;

public class Singleton implements Serializable{
private volatile static Singleton singleton;
private Singleton (){}
public static Singleton getSingleton() {
if (singleton == null) {
synchronized (Singleton.class) {
if (singleton == null) {
singleton = new Singleton();
}
}
}
return singleton;
}

private Object readResolve() {
return singleton;
}
}

总结

本文中介绍了几种实现单例的方法,主要包括饿汉、懒汉、使用静态内部类、双重校验锁、枚举等。还介绍了如何防止序列化破坏类的单例性。