JVM垃圾收集与内存分配策略

虽然比较详尽的分析了JVM各个垃圾收集算法的执行过程,以及对于各个垃圾收集器的介绍,但似乎条理并不那么清晰。“只看这一篇”的梗实在炒烂了,但事实上这篇文章还是希望在之前对于Java GC的了解上,更加系统的整理一下,旨在梳理出清晰系统的知识网络。

之前有整理过JVM GC相关的知识点,包括以下四篇文章:

概述

我们知道程序计数器、虚拟机栈、本地方法栈3个区域随线程而生,随线程而灭;在这几个区域内不需要过多的考虑垃圾回收的问题,因为方法或者线程结束时,内存自然就跟随着回收了。

而Java堆和方法区则不一样,一个接口中的多个实现类需要的内存可能不一样,一个方法中的多个分支需要的内存也可能不一样,我们只有在程序处于运行期间才能知道会创建哪些对象,这部分内存分配和回收都是动态的,垃圾回收主要关注的是这部分内存。

对象已死吗?

在JVM堆中存放着几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象中哪些还“活着”,哪些已经“死去”(即不可能再被任何途径使用的对象)。

引用计数算法

引用计数算法是这样工作的:给对象添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。

客观的说,引用计数算法(Reference Counting)的实现简单,判定效率也高,在大部分情况下是不错的算法。但是,至少主流的Java虚拟机里面没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间相互循环引用的问题

可达性分析算法

在主流的商用程序语言(Java、C#等)的主流实现中,都是通过可达性分析(Reachability Analysis)来判定对象是否存活的。这个算法的基本思路就是通过一系列称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(也就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。

下面图中,对象object 5、object 6、object 7虽然互相有关联,但是它们到GC Roots是不可达的,所以会被判定为是可回收的对象。

reachability_analysis

在Java中,可作为GC Roots的对象包括下面几种:

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象;
  • 方法区中类静态属性引用的对象;
  • 方法区中常量引用的对象;
  • 本地方法栈中JNI(即一般说的Native方法)引用的对象。

垃圾回收算法

标记 - 清除算法

“标记 - 清除”(Mark-Sweep)算法是最基础的收集算法,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其不足进行改进而得到的。

它的主要不足有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大的对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。标记 - 清除算法的执行过程如下图所示。

gc_mark_sweep

复制算法

为了解决效率问题,一种称为“复制”(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原来的一半,未免太高了一点。复制算法的执行过程如下图所示。

gc_copying

现在的商业虚拟机都采用这种收集算法来回收新生代,IBM公司的专门研究表明,新生代中的对象98%是“朝生夕死”的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性的复制到另外一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性的复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

标记 - 整理算法

复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存,“标记-整理”算法的示意图如下图所示。

gc_mark_compact

分代收集算法

当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代老年代,这样就可以根据各个年代的特点采用最适当的收集算法。

在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集;

而老年代因为对象存活率高,没有额外空间对它进行分配担保,就必须使用“标记 - 清除”或者“标记 - 整理”算法来进行回收。

垃圾收集器

如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。Java虚拟机规范中对垃圾收集器应该如何实现并没有任何规定,因此不同的厂商、不同版本的虚拟机所提供的垃圾收集器都可能会有很大差别,并且一般都会提供参数供用户提供自己的应用特点和要求组合出各个年代所使用的收集器。这里讨论的收集器基于JDK1.7 Update 14之后的HotSpot虚拟机(在这个版本中正式提供了商用的G1收集器,之前G1仍处于实验状态),这个虚拟机包含的所有收集器如下图所示。

garbage_collector

上图展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器。下面介绍这些收集器的特性、基本原理和使用场景,并重点分析CMS和G1这两款相对复杂的收集器,了解它们的部分运行细节。

在介绍这些收集器各自的特性之前,我们先来明确一个观点:虽然我们是在对各个收集器进行比较,但并非为了挑选出一个最好的收集器。因为直到现在为止还没有最好的收集器出现,更加没有万能的收集器,所以我们选择的只是对具体应用最适合的收集器。这点不需要多加解释就能证明:如果有一种放之四海皆准、任何场景下都适用的完美收集器存在,那HotSpot虚拟机就没必要实现那么多不同的收集器了。

Serial收集器

Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。大家看名字就会知道,这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。“Stop The World”这个名字也许听起来很酷,但这项必须实际上是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常的线程全部停掉,这对很多应用来说都是难以接受的。不妨试想一下,要是你的计算机每运行一个小时就会暂停响应5分钟,你会有什么样的心情?下图示意了Serial/Serial Old收集器的运行过程。

serial_collector

从Serial收集器到Parallel收集器,再到Concurrent Mark Sweep(CMS)乃至GC收集器的最前沿成果Garbage First(G1)收集器,我们看到了一个个越来越优秀(也越来越复杂)的收集器的出现,用户线程的停顿时间在不断缩短,但是仍然没有办法完全消除。

写到这里,似乎已经把Serial收集器描述成一个“老而无用、食之无味弃之可惜”的鸡肋了,但实际上到现在为止,它依然是虚拟机运行在Client模式下的默认新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户的桌面应用场景中,分配给虚拟机管理的内存一般来说不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本上不会再大了),停顿时间完全可以控制在几十毫秒最多一百多毫秒以内,只要不是频繁发生,这点停顿是可以接受的。所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。

ParNew收集器

ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数(例如:-XX : SurvivorRatio、 -XX : PretenureSizeThreshold、 -XX : HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。ParNew收集器的工作过程如下图所示。

parNew_collector

ParNew收集器除了多线程收集之外,其他与Serial收集器相比并没有太多创建之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。在JDK 1.5时期,HotSpot推出了一款在强交互应用中几乎可认为有划时代意义的垃圾收集器——CMS收集器(Concurrent Mark Sweep),这款收集器是HotSpot虚拟机中第一款真正意义上的并发(Concurrent)收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

不幸的是,CMS作为老年代的收集器,却无法与JDK 1.4.0中已经存在的新生代收集器Parallel Scavenge配合工作,所以在JDK1.5中使用CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中的一个。ParNew收集器也是使用-XX:+UseConcMarkSweepGC选项后的默认新生代收集器,也可以使用-XX : UserParNewGC选项来强制指定它。

注意,从ParNew收集器开始,后面还会接触到几款并发和并行的收集器。在大家可能产生疑惑之前,有必要先解释两个名词:并发和并行。这两个名词都是并发编程中的概念,在谈论垃圾收集器的上下语境中,它们可以解释如下。

  • 并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
  • 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。

Parallel Scavenge收集器

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能的缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率的利用CPU时间,尽快完成程序的运行任务,主要适合在后台运算而不需要太多交互的任务。

Serial Old收集器

Serial Old收集器是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记 - 整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用。另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。Serial Old收集器的工作工程如下图所示。

serial_old_collector

Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器外别无选择(还记得上面说过Parallel Scavenge收集器无法与CMS收集器配合工作吗?)。由于老年代Serial Old收集器在服务器端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。

直到Parallel Old收集器收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。Parallel Old收集器的工作过程如下图所示。

parallel_old_collector

CMS收集器

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出,CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

  1. 初始标记(CMS initial mark)
  2. 并发标记(CMS concurrent mark)
  3. 重新标记(CMS remark)
  4. 并发清除(CMS concurrent sweep)

停顿时间:2 > 3 > 1

其中,初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC RootsTracing的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作。所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过下图可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的时间。

cms_collector

CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,Sun公司的一些官方文档中也称之为并发低停顿收集器(Concurrent Low Pause Collector)。但是CMS还远达不到完美的程度,它有以下3个明显的缺点:

  • CMS收集器对CPU资源非常敏感
    • 其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大,如果本来CPU负载就比较大,还分出一半的运算发能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了50%,其实也让人无法接受。
  • CMS收集器无法处理浮动垃圾(Floating Garbage),可能出现“Concurrent Mode Failure”失败而导致另一次FUll GC的产生。
    • 由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运行使用。在JDK 1.5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在应用中老年代增长不是太快,可以适当调高-XX : CMSInitiatingOccupancyFraction的值来提高触发百分比,以便降低内存回收次数从而获取更好的性能,在JDK 1.6中,CMS收集器的启动阈值已经提升至92%。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。所以说参数-XX : CM SInitiatingOccupancyFraction设置得太高很容易导致大量“Concurrent Mode Failure”失败,性能反而降低。
  • CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生
    • 空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余。但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。为了解决这个问题,CMS收集器提供了一个-XX : +UseCMSCompactAtFullCollection开关参数(默认就是开启的),用于在CMS收集器顶不住要进行FullGC时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。虚拟机设计者还提供了另外一个参数-XX : CMSFullGCsBeforeCompaction,这个参数是用于设置执行多少次不压缩的Full GC后,跟着来一次带压缩的(默认值为0,表示每次进入Full GC 时都进行碎片整理)。

G1收集器

G1是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使用是(在比较长期的)未来可以替换掉JDK1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点:

  • 并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
  • 分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获得更好的收集效果。
  • 空间整合:与CMS的“标记-清理”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作其间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
  • 可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。

在G1之前的其他收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合

在G1收集器中,Region之间的对象引用以及其他收集器中的新生代与老年代之间的对象引用,虚拟机都是使用Remembered Set来避免全堆扫描的。G1中每个Region都有一个与之对应的Remembered Set,虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代中的对象),如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根节点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。

如果不计算维护Remembered Set的操作,G1收集器的运作大致可划分为以下几个步骤:

  1. 初始标记(Initial Marking)
  2. 并发标记(Concurrent Marking)
  3. 最终标记(Final Marking)
  4. 筛选回收(Live Data Counting and Evacuation)

对CMS收集器运作过程熟悉的话,一定已经发现G1的前几个步骤的运作过程和CMS有很多相似之处。初始标记阶段仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发运行时,能在正确可用的Region中创建新对象,这阶段需要停顿线程,但耗时很短。并发标记阶段是从GC Root开始对堆中对象进行可达性分析,找出存活的对象,这阶段耗时较长,但可与用户程序并发执行。而最终标记阶段则是为了修正在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面,最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。最后在筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划,从Sun公司透露出来的信息来看,这个阶段其实也可以做到与用户程序一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。通过下图可以比较清楚的看到G1收集器的运作步骤中并发和需要停顿的阶段。

G1_collector

总之,如果你现在采用的收集器没有出现问题,那就没有任何理由现在去选择G1,如果你的应用追求低停顿,那G1现在已经可以作为一个可尝试的选择,如果你的应用追求吞吐量,那G1并不会为你带来什么特别的好处。

内存分配回收策略

对象的内存分配,往大方向讲,就是在堆上分配,对象主要分配在新生代的Eden区上,少数情况下也可能会直接分配在老年代中,分配的规则并不是百分之百固定的,细节取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数的设置。

对象优先在Eden分配

大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

多次提到的Minor GC和Full GC有什么不一样吗?

  • 新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。
  • 老年代GC(Major GC/Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。

大对象直接进入老年代

所谓的大对象是指,需要大量连续内存空间的Java对象,最典型的大对象就是那种很长的字符串以及数组(byte[]数组就是典型的大对象)。大对象对虚拟机的内存分配来说就是一个坏消息(替Java虚拟机抱怨一句,比遇到一个大对象更加坏的消息就是遇到一群“朝生夕灭”的“短命大对象”,写程序的时候应当避免),经常出现大对象容易导致内存还有不少空间时就提前触发垃圾收集以获取足够的连续空间来“安置”它们。

长期存活对象进入老年代

虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在Eden出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并且对象年龄设为1。对象在Survivor区中每“熬过”一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就将会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数-XX : MaxTenuringThreshold设置。

动态对象年龄判定

为了能更好的适应不同程序的内存状况,虚拟机并不是永远的要求对象的年龄达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。

总结

至此,关于JVM的垃圾回收部分系统性的总结完。Java GC是很微妙并且有趣的原理,在理解各个算法及收集器工作原理的基础上,还要根据系统的实际情况来做trade-off,并不是某个GC算法是最好的算法,也并不存在一个垃圾回收器适用于所有系统。

学以致用,落实实践才是根本。

参考《深入理解Java虚拟机》,建议每位同学都好好阅读几遍。